Меню сайта

Математическая постановка задачи рентгеновской компьютерной томографии, преобразование Радона и формулы обращения.

При каждом фиксированном φj определим следующим образом.

1. Функция имеет непрерывную первую производную по r.

2. В узлах решетки аппроксимирующая функция совпадает с заданными отсчетами, а ее производная в этих точках равна выборочной. То есть справедливы равенства: , , здесь h = 2R/(M-1), I(r0,φj) = I(rM+1, φj) = 0, i = 1, -, M.

3. На интервале [ri, ri+1] функция есть полином третьей степени от r.

Перечисленные условия позволяют в явном виде получить коэффициенты соответствующего сплайна. Непосредственными вычислениями можно получить, что

,

где

Q(x) = Q(-x), Q(x) = 0 при |x|> 2h, h=ri+1-ri.

Функция Q(x) имеет разрывы второй производной, но модуль второй производной интегрируем, используя это обстоятельство можно показать, что свертка S0(z) = Q(x) (-1/πz2) выражается формулой (1.5.1). Непосредственными вычислениями получаем

Графики функций Q(x) и S0(z) для различных значений h представлены на рис. 1 и рис. 2.

Таким образом,

.

Заменяя в (1.5.2) S на и интеграл частной суммой, получаем f*(x, y) - приближение к функции f(x, y),

. (1.5.3)

Как уже отмечалось выше, обычно в компьютерной томографии используется метод свертки и обратного проецирования. Рассмотрим соотношение между этим методом и методом, изложенным в настоящем параграфе. Используя интегрирование по частям, свертку с обобщенной функцией 1/z2 можно заменить дифференцированием и сверткой с 1/z (преобразованием Гильберта).

То есть функцию

S(z, φ) = I(z, φ) 1/z2

можно представить в виде

S(z, φ) = Iz/(z, φ) 1/z

При построении численных алгоритмов вместо обобщенной функции 1/z или, что то же самое, интеграла в смысле главного значения, в методе свертки и обратного проецирования используют некоторую последовательность регулярных функций pА(z), сходящуюся к 1/z (в смысле обобщенных функций) при A стремящемся к бесконечности. Используя интегрирование по частям, дифференцирование переносят на функции pА(z) и таким образом получают регулярные функции, сходящиеся к 1/z2, то есть свертка с обобщенной функцией 1/z2 заменяется последовательностью сверток с регулярными функциями p/А(z).

Таким образом, шаг свертки в классическом методе можно интерпретировать следующим образом: исходные данные аппроксимируются ступенчатой функцией и осуществляется свертка с регулярной функцией, являющейся приближением к обобщенной функцией 1/z2.

В методе настоящего параграфа исходные данные аппроксимируются более гладкими функциями - сплайнами 3-го порядка. Это позволяет точно вычислить свертку с обобщенной функцией 1/z2, причем в явном виде.

Шаг обратного проецирования соответствующий интегрированию свертки в обоих алгоритмах одинаков.

При использовании алгоритмов в реальных ситуациях важно уметь оценивать влияние шумов на точность получаемых приближений. Наличие явного выражения для аппроксимирующей функции позволяет вычислить дисперсию ошибки в любой точке при фиксированных δr, δφ θ известных статистических характеристиках шума. Для случая независимого, аддитивного, стационарного шума ξ (z) можно сделать следующее замечание. Рассмотрим процесс η, являющийся сверткой с 1/z2 процесса ξ. Спектральная плотность этого линейного преобразования есть |λ|. Для спектральных плотностей процессов ξ и η получаем соотношение f η (λ) = |λ|2fξ (λ). Δисперсия процесса η конечна, если интегрируема fη (λ), ςо есть процесс ξ дифференцируем в среднеквадратическом. Для того, чтобы свертка выражалась формулой (1.5.1), на процесс ξ нужно наложить дополнительные условия, потребовав, например, чтобы выборочные функции с вероятностью единица имели конечную вторую производную.

Перейти на страницу: 1 2 3

Читайте больше >>>

Производные бензодиазепина
I. дикалий клоразепата (транксен) b. бензодиазепиновые агонисты БД-Р B. серотониновые агонисты (транквилизаторы) a. бус ...

Эндокринология (болезни поджелудочной железы)
Внешнесекреторная функция поджелудочной железы состоит в выработке панкреатического сока, играющего большую роль в переваривании продуктов питания. Панкреатический сок имеет щелочную реакцию (рН 8,3 – 8,6). В ...

Цикл лекций Женщине о раке
Современная медицина располагает обширным арсеналом диагностических средств, новейшей лечебной аппаратурой, множеством противо­опухолевых препаратов, что позволяет добиться успехов в лечении рака. Однако одни ...

Санитарно-микробиологические исследования и контроль в лечебно-профилактических учреждении за внутрибольничными инфекциями
Внутрибольничные инфекции (синоним нозокомиальные инфекции) - инфекционные болезни, связанные с пребыванием, лечением, обследованием и обращением за медицинской помощью в лечебно-профилактическое учреждение. П ...